source: ffmpeg/libavcodec/lagarith.c

Last change on this file was 1522, checked in by astrange, 5 years ago

Load /Users/astrange/Projects/video/Perian-git/ffmpeg into ffmpeg/.

File size: 18.8 KB
Line 
1/*
2 * Lagarith lossless decoder
3 * Copyright (c) 2009 Nathan Caldwell <saintdev (at) gmail.com>
4 *
5 * This file is part of Libav.
6 *
7 * Libav is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * Libav is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with Libav; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * Lagarith lossless decoder
25 * @author Nathan Caldwell
26 */
27
28#include "avcodec.h"
29#include "get_bits.h"
30#include "mathops.h"
31#include "dsputil.h"
32#include "lagarithrac.h"
33
34enum LagarithFrameType {
35    FRAME_RAW           = 1,    /**< uncompressed */
36    FRAME_U_RGB24       = 2,    /**< unaligned RGB24 */
37    FRAME_ARITH_YUY2    = 3,    /**< arithmetic coded YUY2 */
38    FRAME_ARITH_RGB24   = 4,    /**< arithmetic coded RGB24 */
39    FRAME_SOLID_GRAY    = 5,    /**< solid grayscale color frame */
40    FRAME_SOLID_COLOR   = 6,    /**< solid non-grayscale color frame */
41    FRAME_OLD_ARITH_RGB = 7,    /**< obsolete arithmetic coded RGB (no longer encoded by upstream since version 1.1.0) */
42    FRAME_ARITH_RGBA    = 8,    /**< arithmetic coded RGBA */
43    FRAME_SOLID_RGBA    = 9,    /**< solid RGBA color frame */
44    FRAME_ARITH_YV12    = 10,   /**< arithmetic coded YV12 */
45    FRAME_REDUCED_RES   = 11,   /**< reduced resolution YV12 frame */
46};
47
48typedef struct LagarithContext {
49    AVCodecContext *avctx;
50    AVFrame picture;
51    DSPContext dsp;
52    int zeros;                  /**< number of consecutive zero bytes encountered */
53    int zeros_rem;              /**< number of zero bytes remaining to output */
54    uint8_t *rgb_planes;
55    int rgb_stride;
56} LagarithContext;
57
58/**
59 * Compute the 52bit mantissa of 1/(double)denom.
60 * This crazy format uses floats in an entropy coder and we have to match x86
61 * rounding exactly, thus ordinary floats aren't portable enough.
62 * @param denom denominator
63 * @return 52bit mantissa
64 * @see softfloat_mul
65 */
66static uint64_t softfloat_reciprocal(uint32_t denom)
67{
68    int shift = av_log2(denom - 1) + 1;
69    uint64_t ret = (1ULL << 52) / denom;
70    uint64_t err = (1ULL << 52) - ret * denom;
71    ret <<= shift;
72    err <<= shift;
73    err +=  denom / 2;
74    return ret + err / denom;
75}
76
77/**
78 * (uint32_t)(x*f), where f has the given mantissa, and exponent 0
79 * Used in combination with softfloat_reciprocal computes x/(double)denom.
80 * @param x 32bit integer factor
81 * @param mantissa mantissa of f with exponent 0
82 * @return 32bit integer value (x*f)
83 * @see softfloat_reciprocal
84 */
85static uint32_t softfloat_mul(uint32_t x, uint64_t mantissa)
86{
87    uint64_t l = x * (mantissa & 0xffffffff);
88    uint64_t h = x * (mantissa >> 32);
89    h += l >> 32;
90    l &= 0xffffffff;
91    l += 1 << av_log2(h >> 21);
92    h += l >> 32;
93    return h >> 20;
94}
95
96static uint8_t lag_calc_zero_run(int8_t x)
97{
98    return (x << 1) ^ (x >> 7);
99}
100
101static int lag_decode_prob(GetBitContext *gb, uint32_t *value)
102{
103    static const uint8_t series[] = { 1, 2, 3, 5, 8, 13, 21 };
104    int i;
105    int bit     = 0;
106    int bits    = 0;
107    int prevbit = 0;
108    unsigned val;
109
110    for (i = 0; i < 7; i++) {
111        if (prevbit && bit)
112            break;
113        prevbit = bit;
114        bit = get_bits1(gb);
115        if (bit && !prevbit)
116            bits += series[i];
117    }
118    bits--;
119    if (bits < 0 || bits > 31) {
120        *value = 0;
121        return -1;
122    } else if (bits == 0) {
123        *value = 0;
124        return 0;
125    }
126
127    val  = get_bits_long(gb, bits);
128    val |= 1 << bits;
129
130    *value = val - 1;
131
132    return 0;
133}
134
135static int lag_read_prob_header(lag_rac *rac, GetBitContext *gb)
136{
137    int i, j, scale_factor;
138    unsigned prob, cumulative_target;
139    unsigned cumul_prob = 0;
140    unsigned scaled_cumul_prob = 0;
141
142    rac->prob[0] = 0;
143    rac->prob[257] = UINT_MAX;
144    /* Read probabilities from bitstream */
145    for (i = 1; i < 257; i++) {
146        if (lag_decode_prob(gb, &rac->prob[i]) < 0) {
147            av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability encountered.\n");
148            return -1;
149        }
150        if ((uint64_t)cumul_prob + rac->prob[i] > UINT_MAX) {
151            av_log(rac->avctx, AV_LOG_ERROR, "Integer overflow encountered in cumulative probability calculation.\n");
152            return -1;
153        }
154        cumul_prob += rac->prob[i];
155        if (!rac->prob[i]) {
156            if (lag_decode_prob(gb, &prob)) {
157                av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability run encountered.\n");
158                return -1;
159            }
160            if (prob > 257 - i)
161                prob = 257 - i;
162            for (j = 0; j < prob; j++)
163                rac->prob[++i] = 0;
164        }
165    }
166
167    if (!cumul_prob) {
168        av_log(rac->avctx, AV_LOG_ERROR, "All probabilities are 0!\n");
169        return -1;
170    }
171
172    /* Scale probabilities so cumulative probability is an even power of 2. */
173    scale_factor = av_log2(cumul_prob);
174
175    if (cumul_prob & (cumul_prob - 1)) {
176        uint64_t mul = softfloat_reciprocal(cumul_prob);
177        for (i = 1; i < 257; i++) {
178            rac->prob[i] = softfloat_mul(rac->prob[i], mul);
179            scaled_cumul_prob += rac->prob[i];
180        }
181
182        scale_factor++;
183        cumulative_target = 1 << scale_factor;
184
185        if (scaled_cumul_prob > cumulative_target) {
186            av_log(rac->avctx, AV_LOG_ERROR,
187                   "Scaled probabilities are larger than target!\n");
188            return -1;
189        }
190
191        scaled_cumul_prob = cumulative_target - scaled_cumul_prob;
192
193        for (i = 1; scaled_cumul_prob; i = (i & 0x7f) + 1) {
194            if (rac->prob[i]) {
195                rac->prob[i]++;
196                scaled_cumul_prob--;
197            }
198            /* Comment from reference source:
199             * if (b & 0x80 == 0) {     // order of operations is 'wrong'; it has been left this way
200             *                          // since the compression change is negligable and fixing it
201             *                          // breaks backwards compatibilty
202             *      b =- (signed int)b;
203             *      b &= 0xFF;
204             * } else {
205             *      b++;
206             *      b &= 0x7f;
207             * }
208             */
209        }
210    }
211
212    rac->scale = scale_factor;
213
214    /* Fill probability array with cumulative probability for each symbol. */
215    for (i = 1; i < 257; i++)
216        rac->prob[i] += rac->prob[i - 1];
217
218    return 0;
219}
220
221static void add_lag_median_prediction(uint8_t *dst, uint8_t *src1,
222                                      uint8_t *diff, int w, int *left,
223                                      int *left_top)
224{
225    /* This is almost identical to add_hfyu_median_prediction in dsputil.h.
226     * However the &0xFF on the gradient predictor yealds incorrect output
227     * for lagarith.
228     */
229    int i;
230    uint8_t l, lt;
231
232    l  = *left;
233    lt = *left_top;
234
235    for (i = 0; i < w; i++) {
236        l = mid_pred(l, src1[i], l + src1[i] - lt) + diff[i];
237        lt = src1[i];
238        dst[i] = l;
239    }
240
241    *left     = l;
242    *left_top = lt;
243}
244
245static void lag_pred_line(LagarithContext *l, uint8_t *buf,
246                          int width, int stride, int line)
247{
248    int L, TL;
249
250    if (!line) {
251        /* Left prediction only for first line */
252        L = l->dsp.add_hfyu_left_prediction(buf + 1, buf + 1,
253                                            width - 1, buf[0]);
254    } else {
255        /* Left pixel is actually prev_row[width] */
256        L = buf[width - stride - 1];
257
258        if (line == 1) {
259            /* Second line, left predict first pixel, the rest of the line is median predicted
260             * NOTE: In the case of RGB this pixel is top predicted */
261            TL = l->avctx->pix_fmt == PIX_FMT_YUV420P ? buf[-stride] : L;
262        } else {
263            /* Top left is 2 rows back, last pixel */
264            TL = buf[width - (2 * stride) - 1];
265        }
266
267        add_lag_median_prediction(buf, buf - stride, buf,
268                                  width, &L, &TL);
269    }
270}
271
272static int lag_decode_line(LagarithContext *l, lag_rac *rac,
273                           uint8_t *dst, int width, int stride,
274                           int esc_count)
275{
276    int i = 0;
277    int ret = 0;
278
279    if (!esc_count)
280        esc_count = -1;
281
282    /* Output any zeros remaining from the previous run */
283handle_zeros:
284    if (l->zeros_rem) {
285        int count = FFMIN(l->zeros_rem, width - i);
286        memset(dst + i, 0, count);
287        i += count;
288        l->zeros_rem -= count;
289    }
290
291    while (i < width) {
292        dst[i] = lag_get_rac(rac);
293        ret++;
294
295        if (dst[i])
296            l->zeros = 0;
297        else
298            l->zeros++;
299
300        i++;
301        if (l->zeros == esc_count) {
302            int index = lag_get_rac(rac);
303            ret++;
304
305            l->zeros = 0;
306
307            l->zeros_rem = lag_calc_zero_run(index);
308            goto handle_zeros;
309        }
310    }
311    return ret;
312}
313
314static int lag_decode_zero_run_line(LagarithContext *l, uint8_t *dst,
315                                    const uint8_t *src, const uint8_t *src_end,
316                                    int width, int esc_count)
317{
318    int i = 0;
319    int count;
320    uint8_t zero_run = 0;
321    const uint8_t *src_start = src;
322    uint8_t mask1 = -(esc_count < 2);
323    uint8_t mask2 = -(esc_count < 3);
324    uint8_t *end = dst + (width - 2);
325
326output_zeros:
327    if (l->zeros_rem) {
328        count = FFMIN(l->zeros_rem, width - i);
329        if (end - dst < count) {
330            av_log(l->avctx, AV_LOG_ERROR, "Too many zeros remaining.\n");
331            return AVERROR_INVALIDDATA;
332        }
333
334        memset(dst, 0, count);
335        l->zeros_rem -= count;
336        dst += count;
337    }
338
339    while (dst < end) {
340        i = 0;
341        while (!zero_run && dst + i < end) {
342            i++;
343            if (src + i >= src_end)
344                return AVERROR_INVALIDDATA;
345            zero_run =
346                !(src[i] | (src[i + 1] & mask1) | (src[i + 2] & mask2));
347        }
348        if (zero_run) {
349            zero_run = 0;
350            i += esc_count;
351            memcpy(dst, src, i);
352            dst += i;
353            l->zeros_rem = lag_calc_zero_run(src[i]);
354
355            src += i + 1;
356            goto output_zeros;
357        } else {
358            memcpy(dst, src, i);
359            src += i;
360            dst += i;
361        }
362    }
363    return src_start - src;
364}
365
366
367
368static int lag_decode_arith_plane(LagarithContext *l, uint8_t *dst,
369                                  int width, int height, int stride,
370                                  const uint8_t *src, int src_size)
371{
372    int i = 0;
373    int read = 0;
374    uint32_t length;
375    uint32_t offset = 1;
376    int esc_count = src[0];
377    GetBitContext gb;
378    lag_rac rac;
379    const uint8_t *src_end = src + src_size;
380
381    rac.avctx = l->avctx;
382    l->zeros = 0;
383
384    if (esc_count < 4) {
385        length = width * height;
386        if (esc_count && AV_RL32(src + 1) < length) {
387            length = AV_RL32(src + 1);
388            offset += 4;
389        }
390
391        init_get_bits(&gb, src + offset, src_size * 8);
392
393        if (lag_read_prob_header(&rac, &gb) < 0)
394            return -1;
395
396        lag_rac_init(&rac, &gb, length - stride);
397
398        for (i = 0; i < height; i++)
399            read += lag_decode_line(l, &rac, dst + (i * stride), width,
400                                    stride, esc_count);
401
402        if (read > length)
403            av_log(l->avctx, AV_LOG_WARNING,
404                   "Output more bytes than length (%d of %d)\n", read,
405                   length);
406    } else if (esc_count < 8) {
407        esc_count -= 4;
408        if (esc_count > 0) {
409            /* Zero run coding only, no range coding. */
410            for (i = 0; i < height; i++) {
411                int res = lag_decode_zero_run_line(l, dst + (i * stride), src,
412                                                   src_end, width, esc_count);
413                if (res < 0)
414                    return res;
415                src += res;
416            }
417        } else {
418            if (src_size < width * height)
419                return AVERROR_INVALIDDATA; // buffer not big enough
420            /* Plane is stored uncompressed */
421            for (i = 0; i < height; i++) {
422                memcpy(dst + (i * stride), src, width);
423                src += width;
424            }
425        }
426    } else if (esc_count == 0xff) {
427        /* Plane is a solid run of given value */
428        for (i = 0; i < height; i++)
429            memset(dst + i * stride, src[1], width);
430        /* Do not apply prediction.
431           Note: memset to 0 above, setting first value to src[1]
432           and applying prediction gives the same result. */
433        return 0;
434    } else {
435        av_log(l->avctx, AV_LOG_ERROR,
436               "Invalid zero run escape code! (%#x)\n", esc_count);
437        return -1;
438    }
439
440    for (i = 0; i < height; i++) {
441        lag_pred_line(l, dst, width, stride, i);
442        dst += stride;
443    }
444
445    return 0;
446}
447
448/**
449 * Decode a frame.
450 * @param avctx codec context
451 * @param data output AVFrame
452 * @param data_size size of output data or 0 if no picture is returned
453 * @param avpkt input packet
454 * @return number of consumed bytes on success or negative if decode fails
455 */
456static int lag_decode_frame(AVCodecContext *avctx,
457                            void *data, int *data_size, AVPacket *avpkt)
458{
459    const uint8_t *buf = avpkt->data;
460    int buf_size = avpkt->size;
461    LagarithContext *l = avctx->priv_data;
462    AVFrame *const p = &l->picture;
463    uint8_t frametype = 0;
464    uint32_t offset_gu = 0, offset_bv = 0, offset_ry = 9;
465    int offs[4];
466    uint8_t *srcs[4], *dst;
467    int i, j, planes = 3;
468
469    AVFrame *picture = data;
470
471    if (p->data[0])
472        avctx->release_buffer(avctx, p);
473
474    p->reference = 0;
475    p->key_frame = 1;
476
477    frametype = buf[0];
478
479    offset_gu = AV_RL32(buf + 1);
480    offset_bv = AV_RL32(buf + 5);
481
482    switch (frametype) {
483    case FRAME_SOLID_RGBA:
484        avctx->pix_fmt = PIX_FMT_RGB32;
485
486        if (avctx->get_buffer(avctx, p) < 0) {
487            av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
488            return -1;
489        }
490
491        dst = p->data[0];
492        for (j = 0; j < avctx->height; j++) {
493            for (i = 0; i < avctx->width; i++)
494                AV_WN32(dst + i * 4, offset_gu);
495            dst += p->linesize[0];
496        }
497        break;
498    case FRAME_ARITH_RGBA:
499        avctx->pix_fmt = PIX_FMT_RGB32;
500        planes = 4;
501        offset_ry += 4;
502        offs[3] = AV_RL32(buf + 9);
503    case FRAME_ARITH_RGB24:
504        if (frametype == FRAME_ARITH_RGB24)
505            avctx->pix_fmt = PIX_FMT_RGB24;
506
507        if (avctx->get_buffer(avctx, p) < 0) {
508            av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
509            return -1;
510        }
511
512        offs[0] = offset_bv;
513        offs[1] = offset_gu;
514        offs[2] = offset_ry;
515
516        if (!l->rgb_planes) {
517            l->rgb_stride = FFALIGN(avctx->width, 16);
518            l->rgb_planes = av_malloc(l->rgb_stride * avctx->height * planes);
519            if (!l->rgb_planes) {
520                av_log(avctx, AV_LOG_ERROR, "cannot allocate temporary buffer\n");
521                return AVERROR(ENOMEM);
522            }
523        }
524        for (i = 0; i < planes; i++)
525            srcs[i] = l->rgb_planes + (i + 1) * l->rgb_stride * avctx->height - l->rgb_stride;
526        if (offset_ry >= buf_size ||
527            offset_gu >= buf_size ||
528            offset_bv >= buf_size ||
529            (planes == 4 && offs[3] >= buf_size)) {
530            av_log(avctx, AV_LOG_ERROR,
531                    "Invalid frame offsets\n");
532            return AVERROR_INVALIDDATA;
533        }
534        for (i = 0; i < planes; i++)
535            lag_decode_arith_plane(l, srcs[i],
536                                   avctx->width, avctx->height,
537                                   -l->rgb_stride, buf + offs[i],
538                                   buf_size - offs[i]);
539        dst = p->data[0];
540        for (i = 0; i < planes; i++)
541            srcs[i] = l->rgb_planes + i * l->rgb_stride * avctx->height;
542        for (j = 0; j < avctx->height; j++) {
543            for (i = 0; i < avctx->width; i++) {
544                uint8_t r, g, b, a;
545                r = srcs[0][i];
546                g = srcs[1][i];
547                b = srcs[2][i];
548                r += g;
549                b += g;
550                if (frametype == FRAME_ARITH_RGBA) {
551                    a = srcs[3][i];
552                    AV_WN32(dst + i * 4, MKBETAG(a, r, g, b));
553                } else {
554                    dst[i * 3 + 0] = r;
555                    dst[i * 3 + 1] = g;
556                    dst[i * 3 + 2] = b;
557                }
558            }
559            dst += p->linesize[0];
560            for (i = 0; i < planes; i++)
561                srcs[i] += l->rgb_stride;
562        }
563        break;
564    case FRAME_ARITH_YV12:
565        avctx->pix_fmt = PIX_FMT_YUV420P;
566
567        if (avctx->get_buffer(avctx, p) < 0) {
568            av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
569            return -1;
570        }
571
572        if (offset_ry >= buf_size ||
573            offset_gu >= buf_size ||
574            offset_bv >= buf_size) {
575            av_log(avctx, AV_LOG_ERROR,
576                   "Invalid frame offsets\n");
577            return AVERROR_INVALIDDATA;
578        }
579
580        lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
581                               p->linesize[0], buf + offset_ry,
582                               buf_size - offset_ry);
583        lag_decode_arith_plane(l, p->data[2], avctx->width / 2,
584                               avctx->height / 2, p->linesize[2],
585                               buf + offset_gu, buf_size - offset_gu);
586        lag_decode_arith_plane(l, p->data[1], avctx->width / 2,
587                               avctx->height / 2, p->linesize[1],
588                               buf + offset_bv, buf_size - offset_bv);
589        break;
590    default:
591        av_log(avctx, AV_LOG_ERROR,
592               "Unsupported Lagarith frame type: %#x\n", frametype);
593        return -1;
594    }
595
596    *picture = *p;
597    *data_size = sizeof(AVFrame);
598
599    return buf_size;
600}
601
602static av_cold int lag_decode_init(AVCodecContext *avctx)
603{
604    LagarithContext *l = avctx->priv_data;
605    l->avctx = avctx;
606
607    dsputil_init(&l->dsp, avctx);
608
609    return 0;
610}
611
612static av_cold int lag_decode_end(AVCodecContext *avctx)
613{
614    LagarithContext *l = avctx->priv_data;
615
616    if (l->picture.data[0])
617        avctx->release_buffer(avctx, &l->picture);
618    av_freep(&l->rgb_planes);
619
620    return 0;
621}
622
623AVCodec ff_lagarith_decoder = {
624    .name           = "lagarith",
625    .type           = AVMEDIA_TYPE_VIDEO,
626    .id             = CODEC_ID_LAGARITH,
627    .priv_data_size = sizeof(LagarithContext),
628    .init           = lag_decode_init,
629    .close          = lag_decode_end,
630    .decode         = lag_decode_frame,
631    .capabilities   = CODEC_CAP_DR1,
632    .long_name = NULL_IF_CONFIG_SMALL("Lagarith lossless"),
633};
Note: See TracBrowser for help on using the repository browser.